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A general technique for tackling various reconstruction problems is presented 
and applied to some old and some new instances of such problems. 0 1989 Academic 

Press, Inc. 

1. INTRODUCTION 

Let X be a (finite or infinite) set and let G be a (finite or infinite) group 
of automorphisms of X. Thus G acts on X and for every g E G the sequence 
k&x is a permutation of X. For every subset Y of X and every g E G, 
let g Y be the set of all elements gy, for y E Y. Clearly 1 g Y 1 = 1 Y 1 for every 
finite Y, and this defines an action of the group G on the power set of X. 
The orbit of a subset Y of X is, as usual, the set YG = {g Y: g E G}. We say 
that two subsets Y and 2 of X are G-equivalent iff there is an element g of 
the group G mapping Y into 2, i.e., iff ZE p. Let R be a set of repre- 
sentatives of these orbits, i.e., a family consisting of a unique member of 
each orbit. For an integer k 2 1 and for a subset Y of X of cardinality 
m > k, the k-deck of Y is the function d = d,,: R -+ (0, 1,2, . ...} where for 
each Y E R, d(r) is the number of subsets of cardinality m - k of Y which are 
G-equivalent to r. 

Notice that CrER d(r) = (7) and that if Y and 2 are G-equivalent then 
4,/c = dZ,k, i.e., the k-deck of Y is determined by the orbit of Y under the 
action of G. 

Several problems in combinatorics and in graph theory, known as 
reconstruction problems, are special cases of the following general problem: 

Problem 1.1. Given a set X, a group G of automorphisms of X, and 
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two integers m, k (k cm), decide if any subset Y of cardinality m of X is 
reconstructible (up to G-equivalence) from its k-deck. 

The best known instance of this problem is the edge-reconstruction con- 
jecture [H]. In this problem X is the set of all (i) edges of a complete 
graph K, on n labelled vertices and G is the group of all permutations of 
X induced by permuting the vertices of K,. Every subset Y of X is a graph 
on n vertices, and its orbit is the set of all graphs isomorphic to it. Here 
k = 1, and the l-deck is just the set of isomorphism types of all edge-deleted 
subgraphs of Y, each appearing according to its multiplicity. The edge- 
reconstruction conjecture asserts that for k = 1, m > 4, and X, G as above 
the answer to the decision Problem 1.1 is “yes,” i.e., every graph with m > 4 
edges can be reconstructed from its edge-deleted subgraphs. 

The well-known result of Muller [M], extending that of Lovasz [L], is 
that this is true for m > 1 + log,(n!). More generally, it is shown in [GKR] 
that for X and G as above, for k >/ 1, and for m > k + log,(n! ) or for 
m > I[ (‘;) + k] the answer is also “yes.” 

Here we consider the general Problem 1.1. For a method that works in 
various other situations see [KRl, KR2]. Our results have several applica- 
tions to various old and new reconstruction problems. In particular, we 
generalize a result of Nash-Williams on edge reconstruction of graphs to 
more general combinatorial structures. 

The paper is organized as follows. In Section 2 we state and prove our 
main results concerning Problem 1.1. In Section 3 we consider some 
applications of these results to several reconstruction problems. In par- 
ticular, we show that any colored cycle with m > 5 vertices of color 1 and 
n -m vertices of color 2 is uniquely determined by the set of the m 
(unlabelled) colored cycles obtained from it by replacing, in all possible 
ways, a vertex of color 1 by a vertex of color 2. We also obtain several new 
results for the edge-reconstruction conjecture (for graphs and hypergraphs) 
and for the vertex-reconstruction conjecture. We further discuss some 
geometrical reconstruction problems. In particular we show that every 
polygon with m > 8 vertices in the plane is determined (up to isometry) by 
the set of isometry types of its vertex-deleted subpolygons. In the final 
Section 4 a few open problems are mentioned. 

2. THE MAIN TOOLS 

In this section and throughout the paper we use the following standard 
notation from permutation group theory. For a permutation group G 
acting on X, and for Y and S subsets of X, let YG = { g Y: g E G } denote the 
orbit of Y under the action of G, let G y = (g E G: gY = Y } denote the 
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stabilizer of Y, and let YGs = { g Y: g E G, gS = S> denote the restricted orbit 
of Y under the action of G,. 

We start with the following somewhat technical but useful theorem. 

THEOREM 2.1. Let X be a (finite or infinite) set and let G be a (finite or 
infinite) group of automorphisms of X. Let Y be a subset of cardinality m of 
X, which is not reconstructible from its k-deck. Suppose, further, that there 
is a subset S of Y of cardinality ( S( = t, with a finite stabilizer ( G, ( < W, 
where m -k 2 t. Then there is a set T of cardinality 1 T 1 >/ m - k + 1, satisfy- 
ing S c T z Y, and there is an E E (0, I> such that for every set K satisfying 
SGKETandjK/=&(mod2), thereisagEGso that TngY=K. 

Proof Since Y is not reconstructible from its k-deck there is another 
subset Y’ c X, Y’ +! YG having the same k-deck as Y (and hence, clearly, 
1 Y’ 1 = m). For any set A containing S, let f,(A) denote the number of 
members of YG that contain A. (Notice that the condition 1 Gs 1 < cc easily 
implies that f 1 (S) < co and hence, also, f,(A ) < a for all S c A.) Similarly, 
let f*(A) denote the number of members of Y’G that contain A. Define also 
f = fi - f2. One can easily check that for every set A containing S whose 
cardinality is at most m -k, f,(A) can be determined from the k-deck of Y. 
(In fact:f,(A)=(l/(“,‘Al)) CrEdyk 1 (gEG:A cgr)l.) Sincef@) is deter- 
mined from d Y’,k = dy,k in the same manner we conclude that 

fU)=fM-f,(A)=0 forall ScA, IAl <m-k. (2-l ) 

Let T be a minimal set (with respect to containment), subject to the condi- 
tions SE T E Y and f(T) # 0. Clearly, there is such a T, as f ( Y) = 
(G,I > 1 #O. Also, by (2.1), ) TI am-k+ 1. Put f(T)=f,(T)-f,(T)=b. 

Let K be a set satisfying S c KG T. By a simple inclusionexclusion on 
the number of sets gY containing K we obtain 

I(gEG:gYnT=K}I = c (- l)‘K’-K’ f,(K’). 
K’; KcK’cT 

Similarly 

I{gEG:gY’nT=K)I= 1 (- l)‘K-K’ f2(K’). 
K’;KcK’cT 

By subtracting the second equality from the first we conclude 

I(gEG:gYnT=K)I--I{gEG:gY’nT=K}I 

= c (-l)‘K’-K’f(K’)=(_l)‘T--KI .b, 
K’:KEK’GT 

where the last equality follows from the minimality in the choice of T. 

582bj47/2-3 
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We conclude that there is an E E (0, 1 } such that for every S s Kc T 
with llyl =s(mod 2) there is a ge G so that gYn T= K. (And also, for 
every ScKcT with IKI-(l-s)(mod2) there is a gEG so that 
gY'n T= K.) 

This completes the proof. 1 

Remark 2.2. An equivalent formulation of the last proof is related to 
the study of null q-designs and to the Reed-Muller codes (see 
[AL, FP, MS). A real function h defined on the power set of a set X is a 
null q-design if for every A g X of cardinality I A I < q the equality 
C&Ad h(B) = 0 holds. One can easily check that if in Theorem 2.1, t = 0, 
then the function h defined on the power set of X by h(A) = 1 if A E p, 
h(A) = - 1 if A E YIG, and h(A) = 0 otherwise is a null (m - k)-design. In 
fact, Theorem 2.1 for this case can be derived from the main result of [FP]. 
Null q-designs have recently been generalized to arbitrary ranked finite 
lattices in [Le] where the ideas from [FP] are extended using the theory 
of Mobius functions. It is possible to obtain a version of Theorem 2.1 that 
deals with general ranked finite lattices, but for our purposes here the 
present formulation suffices. 

Remark 2.3. Theorem 2.1 with X being the set of edges of the complete 
graph K,, on rz vertices, G being the group of its automorphisms, S = 0, 
t = 0, and k = 1 is just the result of Nash-Williams [N] concerning the 
edge reconstruction conjecture. 

COROLLARY 2.4. Let G be a finite group acting on X and let Y be a 
subset of cardinality m of X. If 2”- k > ) G l/l G y I then Y is reconstructible 
from its k-deck. In particular, tf 2”- k > I G I then every subset of cardinality 
m of X is reconstructible from its k-deck. 

Proof Clearly I YG I = ( G l/l GY I. If Y is not reconstructible from 
its k-deck, then, by Theorem 2.1 (with S= 0) there is a subset T of 
cardinality 1 T I > m - k + 1 of Y that has at least 2’ ‘I - ’ > 2m-k distinct 
intersections with members of YG. Thus I G l/l GY I > 2m-k. This contradicts 
the assumption and hence Y is reconstructible, as required. 1 

COROLLARY 2.5. Let G be a group acting on X and suppose 
Y~X,IYI=m.Suppose,further, that S~Y,ISI=t,(Gsl<~. 

If2 m- k- ’ > I Yes I . (7) then Y is reconstructible from its k-deck. 

Proof Put I YGS I = s. Suppose the assertion of the corollary is false and 
Y is not reconstructible from its k-deck. By Theorem 2.1 there is a subset 
T, Ss Ts Y, of cardinality I TI am-k+ 1 and an aE (0, l> such that for 
every K, SC KG T, I K( -E (mod 2), there is a gEG so that TngY= K. 
Put 0={gY:g~G, ScgY}. Let Y(t) be the set of all subsets of car- 
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dinality t of Y. Clearly 1 Y(t)/=(y) and O=UzEY(IJ {gY:gEG,S=gZ}. 
One can easily check that for each fixed 2, 1 {g Y; g E G, S = gZ} 1 6 
I YGSl = s. Hence ( 0 / <s(y). On the other hand, T\S has at least 
21Tl-f-l 22rn-k-f distinct intersections with members of 0. Thus 
2m-k-‘< 101 &s(T), contradicting the assumption of the corollary. This 
completes the proof. 1 

3. APPLICATIONS 

3.1. The Edge Reconstruction Conjecture for Graphs and Hypergraphs 

Let X be the set of all (i) edges of the complete graph K,, on n labelled 
vertices and let G be the group of all automorphisms of K,,. As mentioned 
above, the edge reconstruction conjecture for graphs asserts that for these 
X and G, the answer to the decision Problem 1.1 is “yes” for all m > 4; i.e., 
every graph with n vertices and m 2 4 edges is reconstructible from its edge- 
deleted subgraphs. 

Corollary 2.5 (with t = 1) gives that if 2m-2 > m -2. (n - 2)! then any 
graph with n vertices and m edges is reconstructible from its edge-deleted 
subgraphs. This is (slightly) better than Muller’s result [M], which follows, 
of course, from Corollary 2.4. 

Another result which follows from Theorem 2.1 is the following. 

PROPOSITION 3.1. Let H be a connected graph with n vertices, m edges, 
and maximum degree A. If 

2m-k-“+1>n.A!(A-1)“-d-1 P-1 ) 

then H is reconstructible from the collection of its k-edge deleted subgraphs. 

We note that this implies that if d 2 2 + 2 log, A + 2(k - 1 )/n, where d is 
the average degree in H, then H is reconstructible from its k-edge deleted 
subgraphs. This extends a theorem of Caunter and Nash-Williams 
(cf. [B] ), who proved the case k = 1 of the above statement. 

ProoJ Suppose the proposition is false and let H be a counterexample. 
Let Y be the set of edges of H and let S be the set of edges of an arbitrary 
spanning tree with maximum degree A in H. Since Y is not reconstructible 
from its k-deck, Theorem 2.1 implies that there is a set of edges T, 
SETG Y, ITI am-k+ 1, and an EE (0, 11, such that for every 
K, S c Kc T, I K I - E (mod 2), there is an automorphism g of K,, such that 
gYn T= K. Hence I { gY: ScgY} I b 21T’-IsI-1 2 2m-k-n+1. However, 
the set { gY: S cgY} is the number of distinct copies of the graph H that 
contain the edges of the fixed spanning tree S. It is not too difficult to show 
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that this number does not exceed ~1. d!(d - l)“-d-l (see, e.g., [B]). 
Hence, 2+‘-“+’ < nA!(A - l)n--d- ‘, contradicting inequality (3.1). 
Therefore, H is reconstructible and the assertion of Proposition 3.1 
holds. 1 

Similar results hold for uniform or non-uniform hypergraphs. Here X is 
the set of all 2” edges of the complete hypergraph H, on n labelled vertices 
and G is the group of n! automorphisms of H,. Corollary 2.4 implies here 
that any hypergraph with n vertices and WI edges is reconstructible from its 
edge-deleted subgraphs, provided 2”- ’ > n!. Analogous results for 
reconstruction from k-edge-deleted subgraphs can be obviously formulated 
and proved, as well. Let us mention an application of the last result to the 
vertex reconstruction conjecture, that asserts that any graph with n 2 3 ver- 
tices is reconstructible from its vertex-deleted subgraphs. This conjecture is 
not a special case of Problem 1.1, but for certain graphs it is. Indeed, let 
G = ( V, E) be a 2-connected bipartite graph with classes of vertices A and 
B, where IBI bl +log,(lA I!) an in which each two vertices in B have d 
distinct sets of neighbours. Associate each such graph G with a hypergraph 
H(G) on the set of vertices A whose I B I edges are the sets eb = {a E A; 
ab E E} (b E B). One can easily check that for every b E B, H( G\b) = 
H(G) - eb and hence, the vertex-reconstructibility of G follows from the 
edge-reconstructibility of the hypergraph H(G). 

3.2. The Cycle Problem and Its Extension 

Let X be a cycle of length n and let Y be a coloring of its vertices by two 
colors, denoted 0 and 1. Suppose m vertices are colored 1 and suppose 
1 < k < m. If we are given the collection of all (y )( unlabelled) colored cycles 
obtained from Y be replacing k l’s by O’s, can we reconstruct Y (up to 
rotation and reflection)? This problem is obviously a special case of the 
general Problem 1.1 presented in Section 1. Here X is the set of n vertices 
of the cycle and G is the group of its automorphisms, i.e., the dihedral 
group of order 2n. By Corollary 2.4, if m > log,(2n) + k then Y is 
reconstructible. However, Corollary 2.5 is more effective here. Clearly, for 
every x E X, ( G, I = 2. Hence, by Corollary 2.5 if 

m > log,(2m) + k + 1 (3.2) 

then Y is reconstructible. For k = 1 this shows that Y is reconstructible for 
all m 2 6. 

We note that for k = m - 2 there are non-reconstructible colorings with 
larger values of m. To see this recall that a difference set modulo n is a 
subset D E 2, so that every 0 # x E 2, can be expressed uniquely as a dif- 
ference d- d’ where d, d’ ED. Let D, and D, be two difference sets modulo 
n, so that D,#D,+x and D,# -D,+x for every XEZ,. Put 
I D1 I = ID, I = m. Identify the n vertices of the cycle X with the elements of 
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2, and define two colorings Y, and Y2 of it by Y,(x) = 1 iff x E Di (i = 1,2). 
One can easily check that these two colorings are not isomorphic, but the 
two collections of all (7) colorings obtained from each of them by replacing 
in all possible ways m - 2 l’s by O’s are identical. As an example take 
n = 13, m = 4, k = 2, D, = (0, 1,4, 6}, and D, = (0, 2, 8, 12). This shows 
that for m = 4 and k = 2 not every Y is reconstructible. By inequality (3.2) 
for k = 2 if m 2 7 then Y is reconstructible. 

The cycle problem can be generalized to arbitrary graphs. Let H be a 
graph on a set X of vertices, and let Y be a coloring of its vertices by the 
two colors 0 and 1, with m vertices colored 1. Suppose we are given the 
collection of all ( y) (unlabelled) colorings obtained from Y by replacing in 
all possible ways k l’s by 0’s. Can we then reconstruct Y? Here G is the 
group Aut H of automorphisms of H. Thus, e.g., if 2” - ’ > 1 Aut H 1 then Y 
is reconstructible by Corollary 2.4. The cycle problem is an interesting 
example, since here, by Corollary 2.5, our results do not depend on the 
length n of the cycle. For every fixed k, any coloring with sufficiently large 
m is reconstructible. There are many other examples of such graphs H, e.g., 
the product of an n-cycle with an edge, or with a triangle. Similar results 
hold for edge coloring, where the edge reconstruction conjecture is an 
instance of this last problem, with H = K, and k = 1. 

3.3. Geometrical Reconstructions 

In the previous applications, the automorphism group G considered was 
always finite. Here we mention some infinite examples. Let X be a subset 
of the 2-dimensional Euclidean space lw2 (we will be interested in the cases 
X=R2 or X=S’={( x,,x,)~R~:x:+x:=l}). Let G be the group of all 
isometries of X. Thus, for X= Iw2 or X= S’, two subsets of X are G-equiv- 
alent iff they are isometric. If Y is a finite subset of cardinality m of X and 
k cm, then the k-deck of Y is the set of all (T) isometry types of all the 
subsets of cardinality m-k of Y, each appearing according to its multi- 
plicity. We fn-st consider the case X = S’. Any finite subset of X is the set 
of vertices of a polygon, inscribed in a unit circle. Clearly, here, for every 
x E X 1 G, 1 = 2 and hence, by Corollary 2.5, if m > k + 1 + log,(2m) then Y 
is reconstructible from its k-deck. Notice that the example given in the pre- 
vious section is an example of a set of four points which is not reconstruc- 
tible from its 2-deck. For subsets of S’ we can show that “similar” k-decks 
correspond to “similar” subsets. More formally, let us define the distance 
d( Y, Y’) between two finite subsets of the same cardinality Y and Y’ of S’ 
as 

1 dist(gy,f(y)):gEG,f: Y+ Y’abijection 
YE y 

where dist( gy,f( y)) is the usual (Euclidean) distance between gy andf( y). 
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In this notation we prove: 

THEOREM 3.1. Suppose Y, Y’ c S’, 1 Y 1 = 1 Y’I = m > k + 1 + log,(2m), 
and suppose that there is a bijection h from the set F of all (7) subsets of car- 
dinality m - k of Y to the set F’ of all (r) subsets of cardinality m - k of Y’ 
so that for every TE F, d( T, h(T)) < E < 1/202”+ ‘. Then d( Y, Y’) < 40 .rn -1. 

Proof The points of S’ are just the points {e2rrir: 0 < x < 11. By the 
well-known result of Kronecker on simultaneous approximations (see, e.g., 
[HW]) there is an integer p, l/20& <p < l/10&, such that for every point 
y E Yu Y’ there is an integer j so that dist( y, e2”Q’P) < (2O~)‘~~~/p < 
j dist( 1, e2rti’P). 

Let P be the set obtained from Y by replacing each of its points by the 
closest point of the form e2nU’*, and let Y’ be the set obtained from Y’ in 
the same manner. We claim that dk, y = dk,y. Indeed, the correspondence h 
between F and F’ gives a correspondence h between the set P of subsets of 
cardinality m-k of Y to the corresponding set F’ for Y’, so that d( T, 
h( i’)) < dist( 1, e2ni’p ) for all FE F. However, one can easily check that this - - 
is possible iff T is isometric to h(T) for each such T, since both are subsets 
of the discrete set of points (e2rrijlp : 0 <j <p >. Therefore dk, p = dk,F and 
hence P is isometric to Y’. This clearly implies that d( Y, Y’) < 40m&, as 
needed. 1 

Next we consider the case X= [w2. Here, for every subset S of two points 
in the plane there are four isometries g of [w2 that map S to itself. There- 
fore, by Corollary 2.5 (with t = 2 and s = 4) if 2m-k-2 > 4(y) then any 
subset of m points in the plane is reconstructible from its k-deck. We note 
that by being more careful one can show that for k = 1 the inequality 
2” - 3 > 4m is enough, as the maximaum distance between a pair of m 
points in the plane is obtained at most m times (see, e.g., [E] ). 

Thus, every set of m > 8 points in [w2 is uniquely determined (up to 
isometry) by the isometry types of all its point-deleted subsets. For some 
related results, see [KR3]. 

The above results can be generalized to sets of points in general position 
in higher dimensions. We omit the details. 

4. OPEN PROBLEMS 

The most interesting problem is of course the edge reconstruction conjec- 
ture. It does not seem that the general approach considered here will be 
very fruitful in tackling this problem; one will probably have to use more 
specific combinatorial arguments. 

In the cycle problem, considered in Section 3, it would be nice to decide 
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precisely for every pair m and k if every cycle coloring with m l’s can be 
reconstructed from the collection of the (T) colorings obtained from it by 
replacing k l’s by O’s in all possible ways. Our results suggest that the size 
n of the colored cycle is not crucial here. A similar question arises naturally 
for the geometric problem. It would be interesting to decide, for every m 
and k, if every set of m points in R2 is determined (up to isometry) by its 
k-deck. 
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